
Probability and Statistics in NLP 

Niranjan Balasubramanian 

Jan 28th, 2016 



Natural Language 

 

 

 

 

 

 

 

 

 

 

 

Mechanism for communicating thoughts, ideas, emotions, and more. 

 

 

 

 

 

 

 



What is NLP? 

Building natural language interfaces to computers (devices more generally).  

 

Building intelligent machines requires knowledge, a large portion of which is textual. 

 

Building tools to understand how humans learn, use, and modify language. 

– Help linguists test theories about language. 

– Help cognitive scientists understand how children acquire language. 

– Help sociologists and psychologists model human behavior from language. 



Natural Language Interfaces to Computing 



A brief history of computing 

2000 BC 
 
 
 
 
1800-1930 
 
 
 
 
1950-ish 
 
 
 
 
1980s 
 



2016 – We need to be able to talk to our devices! 



Artificial Intelligence needs our knowledge! 



NLP Applications 



What aspects of language do we need to worry about? 

Image From:  Commons.wikimedia.org 



Why is NLP hard? 

• Ambiguity 

 

 

• Meaning is context dependent 

 

 

• Requires background knowledge 

 

 

 



Ambiguity (and consequently, uncertainty). 

   I saw a man with a telescope. 

 

 

   I saw a bird flying over a mountain. 

 

 

 

 
Exists in all kinds of NLP tasks. 
 
Ambiguity compounds explosively (Catalan numbers) 
 
 e.g., I saw a man with a telescope on a hill 



Context Dependence and Background Knowledge 

 

  Rachel ran to the bank. 

 

  vs.  

 

  Rachel swam to the bank. 

 

 

  John drank some wine at the table. It was red.  

 

  vs. 

 

  John drank some wine at the table. It was wobbly. 

 



Language Modeling 

Niranjan Balasubramanian 

 

Slide Credits: 

Chris Manning, Dan Jurafsky,  Mausam 



Today’s Plan 

• What is a language model? 

 

 

• Basic methods for estimating language models from text.  

 

 

• How does one evaluate how good a model is? 

 

 

 



What is language modeling? 

 

• Task of building a predictive model of language. 

 

 

• A language model is used to predict two types of quantities. 

 

1. Probability of observing a sequence of words from a language. 

 e.g., Pr(Colorless green ideas sleep furiously) = ? 

 

2. Probability of observing a word having observed a sequence. 

 e.g. Pr(furiously | Colorless green ideas) = ? 



Why model language? 

 

• The probability of observing a sequence is a measure of goodness. 

 

 

• If a system outputs some piece of text, I can assess its goodness. 

– Many NLP applications output text. 

 

 

• Example Applications 

– Speech recognition 

– OCR  

– Spelling correction 

– Machine translation 

– Authorship detection 

  



Are roti and chapati the same? 



Language Model Corrections 



Language Modeling: Formal Problem Definition 

 

 A language model is something that specifies the following two quantities,  

 for all words in the vocabulary (of a language). 

 

 1. Probability of a sentence or sequence 

  Pr(w1, w2, …, wn) 

 

 2. Probability of the next word in a sequence  

  Pr(wk+1 | w1, …, wk) 

 

 

 Note on notation: 

 

  Pr(w1, w2, …, wn) is short for Pr(W1 = w1, W1 = w2 , …, Wn = wn) 

  Random variable W1 taking on value w1 and so on. 

 

  e.g., Pr(I, love, fish) = Pr(W1 = I, W2 = love, W3 = fish)  

 



How to model language? 

• Count! (and normalize). 

– Need some source text – corpora. 

 

• Main Issues 

 

 Issue 1:  We can generate infinitely many new sequences. 

 

e.g., “Colorless green ideas sleep furiously” is not a frequent sequence. 

 [Thanks to Chomsky, this sequence is now popular.] 

 

 Issue 2: We generate new words all the time.  

 

e.g., Truthiness, #letalonethehashtags,  

 



Pr(W):   Assumptions are key to modeling. 

• We are free to model the probabilities however we want to. 

– Usually means that you have to make assumptions.  

 

 

• If you make no independence assumptions about the sequence, then  

     one way to estimate is the fraction of times you see it. 

 

  Pr(w1, w2, …, wn) = #(w1, w2, …, wn) / N 

 

 where N is the total number of sequences. 



  

• [White board] Markov assumption and n-gram definitions. 



Issues with Direct Estimation 

• How many times would you have seen the particular sentence?  
 

 Pr(w1, w2, …,  wn) = #(w1, w2, …, wn) / N  

 
– Estimating from sparse observations is unreliable.  
– Also, we don’t have a solution for a new sequence.  

 
• Use chain rule to decompose joint into a product of conditionals 

 
 Pr(w1, w2, …,  wn) = Pr(w1 | w2, …,  wn)  
      x Pr( w2, …,  wn ) 
 

 Pr(w1, w2, …,  wn) = Pr(w1 | w2, …,  wn)  
      x Pr(w2 | w3, …,  wn )  

           x Pr(w3, …,  wn )  
 … 
 

 

 Pr(w1, w2, …,  wn) = ? 
 
 

• Estimating conditional probabilities with long contexts is difficult! 
– Conditioning on 4 or more words itself is hard. 
 



Markov Assumption 

• Next event in a sequence depends only on its immediate past (context). 

   

 

 

 

• n-grams 

 

– Unigrams   Pr(wk+1 | wk) 

– Bigrams  Pr(wk+1 | wk-1, wk ) 

– Trigrams  Pr(wk+1 | wk-2, wk-1, wk ) 

– 4-grams  Pr(wk+1 | wk-2, wk-2, wk-1, wk ) 

 

 

• Note:   

– Other contexts are possible and in many cases preferable. 

– Models tend to be more complex.  

 

Context 



Unigrams 

• Next event in a sequence is independent of the past. 

 

 

 

 

• An extreme assumption but can be useful nonetheless.   

 

 

• Issue 

– Non-sensical phrases or sentences can get high probability. 

 

     Pr(the a an the a an the an a) > Pr(The dog barks)  

  



Bigrams and higher-order N-grams 

• Bi-grams: Next word is dependent on the previous word alone. 

 

 

 

 

 Widely used. 

 

• N-grams: Next word dependent on the previous n words.  

  



Reliable Estimation vs. Generalization 

• We can estimate unigrams quite reliably but they are often not a good model. 

 

• Higher order n-gram require large amounts of data but are better models. 

 

– However, they have a tendency to overfit the data. 

 

• Example sentences generated from Shakespeare language models: 

 

 Unigram  Every enter now severally so, let. 

 Bigram  then all sorts, he is trim, captain. 

 Trigram  Indeed the duke; and had a very good friend. 

 4-gram  It cannot be but so. 

 

 

 



Shakespeare and Sparsity 

Shakespeare’s works have about 800K tokens (words) in all with a vocabulary of 30K. 

 

 

The number of unique bigrams turn out to be around 300K. 

 

 

What is the total space of possible bigrams?  

 

  

 

Sparse! 

 --  Many bigrams are unseen. 

 

 

 



Are these well-defined distributions? Proof for unigrams. 

[Work out on board.] 



What is a good language model? An ideal perspective! 

• To be a bit recursive, a good language model should model the language well. 

– If you ask questions of the model it should provide reasonable answers. 

 

 

• Well formed English sentences should be more probable. 

 

 

• Words that the model predicts as the next in a sequence should “fit” 
– Grammatically 

– Semantically 

– Contextually 

– Culturally 

 

• These are too much to ask for, given how mind-numbingly simple these models are! 

 

  

 

 



What is a good language model? An utilitarian perspective. 

• Does well on the task we want to use it for. 

– Difficult to do because of the time it takes. 

 

 

• Want models that assign high probabilities to samples from language. 

– Can’t use the samples used for estimation.  [Why?] 

 

 

 



Many choices in modeling: How to pick a language model? 

• Machine Learning Paradigm 

– A model is good if it predicts a test set of sentences. 

– Reserve some portion of you data for estimating parameters. 

– Use the remainder for testing your model. 

 

 

• A good model assigns high probabilities to the test sentences. 

– Probability of each sentence is normalized for length. 



Perplexity 

• An alternative that measures how well the test samples are predicted. 

 

• Models that minimize perplexity,  also maximize the probability. 

– Take inverse of the probability and apply a log-transform. 

– [Work out on board.] 

 

 

 

 

 

 

 

 

 

 

 

 



Perplexity of a Probability Distribution 

• Perplexity is a measure of surprise in random choices. 

 

 

• Distributions with high uncertainty have high perplexity.  

– A uniform distribution has high perplexity because it is hard to predict a random 
draw from it.  

– A peaked distribution has low perplexity because it is easy to predict the outcome 
of a random draw from it.  

 

 

 

 

 

 

 

 

 

 

 



Generalization Issues 

• New words 

 

 

 

 

 

• Rare events 

 

 

 



Discounting 

Pr(w | denied, the) 

MLE 

Discounting 



Add One / Laplace Smoothing 

• Assume that there were some additional documents in the corpus, where every 
possible sequence of words was seen exactly once.  

 

– Every bigram sequence was seen one more time. 

  

 

• For bigrams, this means that every possible bi-gram was seen at least once.  

 

– Zero probabilities go away. 

 

 

 



Add One Smoothing 

Figures from JM 



Add One Smoothing 

Figures from JM 



Add One Smoothing 

Figures from JM 



Add-k smoothing 

• Adding partial counts could mitigate the huge discounting with Add-1. 

 

 

 

 

 

 

• How to choose a good k? 

 

– Use training/held out data. 

 

 

• While Add-k is better, it still has issues. 

– Too much mass is stolen from observed counts. 

 

 



Good-Turing Discounting 

• Chance of a seeing a new (unseen) bigram  

  = Chance of seeing a bigram that has occurred only once (singleton) 

 

 Chance of seeing a singleton = #singletons / # of bigrams 

 

• Probabilistic world falls a little ill. 

– We just gave some non-zero probability to new bigrams.  

– Need to steal some probability from the seen singletons. 

 

• Recursively discount probabilities of higher frequency bins. 

– PrGT(wi
1) = 2 . N2 / N1 

– PrGT(wi
2) = 3 . N3 / N2 

 

 

• Exercise: Can you prove that this forms a valid probability distribution? 

 

 

 

 

 

 



Absolute and Kneser-Ney   
[Don’t make text heavy slides like these.] 

• Empirically one finds that GT reduces a fixed amount for bigrams that occur two or 
more times, typically around 0.75.  

 

• This suggests a more direct method, which is to simply discount a fixed amount for 
this bigrams that occur 2 or more times, and keep GT method for 0 and 1 bigrams. 

– Absolute discounting.  

 

• Kneser-Ney method extends the absolute discounting idea. For instance for bigrams: 

– Discount counts by a fixed amount and interpolate with unigram probability.  

– However, the raw unigram probability is not such a good measure to use.  

• Pr(Francisco) > Pr(glasses) but Pr(glasses | reading) should be > 
Pr(Francisco | reading) 

• glasses is better because it follow many word types compared to Francisco 
which only typically follows San. 

– Interpolate with the continuation probability of the word, rather than the unigram. 

• Interpolation weight is chosen so that the discounted mass is spread over 
each possible bigram. 

 

• Commonly used in Speech Recognition and Machine Translation.  

 



Back-off 

• Conditioning on longer context is useful if counts are not sparse. 

 

• When counts are sparse, back-off to smaller contexts. 

– If estimating trigrams, use bigram probabilities instead. 

– If estimating bigrams, use unigram probabilities instead. 

 

 

 



Interpolation 

• Instead of backing off some times, interpolate estimates from various contexts. 

 

 

 

 

• Requires a way to combine the estimates. 

 

 

 

 

• Use training/dev set.  



Summary 

• Language modeling is the task of building predictive models. 

– Predict the next word in a sequence. 

– Predict the probability of observing a sequence in a language. 

 

• Difficult to directly estimate probabilities for large sequences. 

 

• Markov independence assumptions help deal with this.  

– Leads to various n-gram models. 

 

• Careful chosen estimation techniques are critical for effective application.  

– Smoothing  



A (not so) random sample of NLP tasks. 

• Language Modeling 

 

• POS Tagging 

 

• Syntactic Parsing 

 

• Topic Modeling 

 

 

 



One Slide Injustice to POS Tagging 

S1 S2 S3 

Dogs chase cats 

DOT 

. 

STAR
T 

   Sequence Modeling using Hidden Markov Models  
 
A finite state machine goes through a sequence of states and produces the sentence.  
 
Tagging is the task of figuring out the states that the machine went through. 
 State transitions are conditioned on previous state.  
 Word emissions are conditioned on current state. 
 
Given training data, we can learn (estimate) the transition, and emission probabilities. 
 
It is also possible to learn the probabilities with unlabeled data using EM.  
  



One Slide Injustice to Syntactic Parsing 

Trade-off: Adding lexical information and fine-grained categories: 
 
  a) Increases sparsity -- Need appropriate smoothing. 
  b) Adds more rules – Can affect parsing speed. 



One Slide Injustice to Topic Modeling 

Documents 
LDA 

Car 
Ferrari 
Wheels 
… 

election 
vote 

senate 
… 

nasdaq 
rate 

stocks 
… 

… 

- - - - - - - - 
- - - - - - - - 
- -  
 - - - - - - - 
- - - - - - - - 
- - - 

… 

T2 Tk T1 

P(T1|D1) 
P(T2|D1) 
… 
P(Tk|D1) 

- - - - - - - - 
-  
- - - - - - - - 
- - - - - - - - 
- -  
- - - - - - - - 
- 

P(T1|D2) 
P(T2|D2) 
… 
P(Tk|Dk) 

D1 

D2 

P(w1|T1) 
P(w2|T1) 
… 
P(w|V||T1) 

P(w1|T2) 
P(w2|T2) 
… 
P(w|V||T2) 

P(w1|Tk) 
P(w2|Tk) 
… 
P(w|V||Tk) 

… 

Topics are distributions over words. 
 
Documents are distributions over topics.  



Why probability and statistics  are relevant for NLP? 

 

 

      A don’t-quote-me-on-this answer: 

 

 

 

 

 

  This reduction isn’t as far fetched as I made it sound.  

 

  We probably do the same.  

 

  We interpret sentences into some form of meaning (or a call to action). 

 

 All of NLP can reduce to the estimation of uncertainty of various 
 aspects of interpretation and balancing them to draw inferences.  


